CIDE Family-Mediated Unique Lipid Droplet Morphology in White Adipose Tissue and Brown Adipose Tissue Determines the Adipocyte Energy Metabolism
نویسندگان
چکیده
White adipose tissue (WAT) stores energy as triacylglycerol in preparation for fasting state. In contrast, brown adipose tissue (BAT) consumes energy and produces heat in a cold environment. One of the major differences between these two adipose tissues is the morphology of the intracellular lipid droplet (LD), which is large and unilocular in WAT and small and multilocular in BAT. Although the fat-specific protein 27 alpha (FSP27α), belonging to the cell death-inducing DNA fragmentation factor A (DFFA)-like effector (Cide) family, was known to be indispensable for large unilocular LD formation in WAT, the mechanism that regulated small multilocular LD formation in BAT remained unknown. We recently uncovered that FSP27β, a novel isoform of FSP27 abundantly expressed in BAT, plays a crucial role in small multilocular LD formation by inhibiting the homodimerization of CideA in BAT. We speculate that unilocular LD formation is ideal for efficient lipid storage in WAT because lipolysis from the LD surface is restricted due to the minimum LD surface area. In addition, hydrolyzed free fatty acid (FFA) and glycerol can efficiently flow out into the circulation from the cell surface. In contrast, small multilocular LD formation is ideal for efficient intracellular lipolysis from the LD surface and the subsequent facilitation of FFA transport to mitochondria that are adjacent to LDs for β-oxidation in BAT. Thus, intracellular LD morphology is closely related to the functions and characteristics of adipose tissues. Given that the browning of adipose tissue leads to enhanced energy expenditure and the prevention of obesity, clarification of the mechanism with respect to intracellular LD formation is very meaningful.
منابع مشابه
Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice
Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/-) mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT m...
متن کاملAdipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance☆
OBJECTIVE Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in...
متن کاملPerilipin Overexpression in White Adipose Tissue Induces a Brown Fat-Like Phenotype
BACKGROUND Perilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Previously, we reported that adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and resulted in improved insulin sensitivity. In order to better understand the biological basis for this observed phenotype, we performed additional stud...
متن کاملInstructions for use Title Perilipin Overexpression in White Adipose Tissue Induces a Brown Fat-Like Phenotype
Background: Perilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Previously, we reported that adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and resulted in improved insulin sensitivity. In order to better understand the biological basis for this observed phenotype, we performed additional stu...
متن کاملPexRAP Inhibits PRDM16-Mediated Thermogenic Gene Expression.
How the nuclear receptor PPARγ regulates the development of two functionally distinct types of adipose tissue, brown and white fat, as well as the browning of white fat, remains unclear. Our previous studies suggest that PexRAP, a peroxisomal lipid synthetic enzyme, regulates PPARγ signaling and white adipogenesis. Here, we show that PexRAP is an inhibitor of brown adipocyte gene expression. Pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2017